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The vortical layer on an inclined cone 

By ALBERT G. MUNSON” 
Department of Aeronautics and Astronautics, Stanford University, Pa10 Alto, 

California 

(Received 20 March 1964) 

The problem of flow over a circular cone inclined slightly to a uniform stream is 
solved using the technique of matched asymptotic expansions. The outer expan- 
sion is equivalent to Stone’s solution of the problem. The inner expansion, valid 
in a thin layer near the body, represents Ferri’s vortical layer. The solution to 
first order in angle of attack so obtained is uniformly valid everywhere in the flow 
field. In  the second-order expansion an additional non-uniformity appears near 
the leeward ray. This defect is removed by inspection. The first-order solution is 
in agreement with that of Cheng, Woods, Bulakh and Sapunkov. Formulas are 
given that may be used to render Kopal’s numerical result uniformly valid to 
second order in angle of attack. 

1. Introduction 
A curious singularity appears at the surface of a circular cone inclined a t  a 

small angle to an inviscid supersonic stream. This phenomenon was unknown to 
Stone (1948, 1952) who expanded the flow quantities formally in ascending 
powers of the angle of inclination and found the first- and second-order perturba- 
tions. His results served as the basis for extensive numerical computation by 
Kopal(1947b, 1949). The singularity was discovered by Ferri (1950) who gave a 
physical description of the flow near the surface. He deduced that streamlines 
crossing the shock wave at any circumferential location eventually curve around 
the body toward the leeward plane of symmetry. Though the entire flow field is 
rotational, a thin layer of intense vorticity lies near the surface. Ferri called this 
the vortical layer. All streamlines approach the top ray, and consequently the 
entropy in that neighbourhood is many-valued. Ferri called this the vortical 
singularity (see figure 1). He has conjectured that at high angle of attack the 
singularity leaves the surface of the body. The present flow problem is only one 
case of the occurrence of vortical singularities. Indeed, they are present in any 
conical flow without axial symmetry. 

Cheng (1962) obtained a mathematical description of Ferri’s vortical layer for 
the circular cone. He first solved Stone’s problem using the Newtonian approxi- 
mation to simplify the analysis, and found a solution correct to first order in 
angle of attack everywhere except near the body. He then used a modified 
expansion scheme-not restricted to the Newtonian approximation-to study 
the flow near the surface. The results thus obtained enabled him to render his 
formal solution valid to first order in angle of attack even near the body-except 
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possibly in the immediate vicinity of the vortical singularity in the leeward plane 
of symmetry. Sapunkov ( 1 9 6 3 4  pointed out that Cheng’s results for density, 
shock-wave shape, circumferential velocity, and pressure are incorrect because 
of an algebraic err0r.t Bulakh ( 1 9 6 2 ~ )  used Stone’s first-order results to study 
the flow near the surface. His results are similar to, but more general than, those 
of Cheng. Woods (1962) also used the Stone theory to study the flow near the 
surface, but did not attempt to give solutions valid in the entire flow field. 
Sapunkov (19633) used the Newtonian approximation and a modified expansion 

FIGURE 1. Projection of streamlines on T = const. surface (schematic). 
-, First-order stream-lines; - - -, second-order streamlines. 

scheme to extend his own results (Sapunkov 1963a) and those of Cheng to second 
order in angle of attack. His fist-order results differ by higher-order terms- 
which he subsequently discards-from the results of Cheng (1962) and Sapunkov 
( 1 9 6 3 ~ ) .  He has also corrected a non-uniformity in the gradient of normal 
velocity component which was not considered by Cheng and Bulakh. 

A somewhat different approach to the problem was taken by Gonor (1958)’ 
Bulakh (1962b), and Sapunkov (1963b). Gonor obtained a solution for the outer 
flow, valid for arbitrary angle of attack using the Newtonian approximation. 
Bulakh and later Sapunkov treated the non-uniformity at the surface. Their 
results show the existence of a vortical layer at the surface, but no explicit results 
for flow quantities are given. 

In  the present work the problem is studied using the method of matched 
t One may obtain the correct result by crossing out terms proportional to log (1 + k) in 

Cheng’s equations (2.7), (2.8), (2.9), (2.10), and (3.19) andadding2s(l+k) log ( l + k )  to 
(3.18). Also in (2.9) and (2.10) in the same paper, log 7 should be replaced by - 1. 
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asymptotic expansions (see Lagerstrom 1957; Erd6lyi 1961; Van Dyke 1964). 
Stone’s first- and second-order problems-representing the linear and quadratic 
effects of angle of attack-are shown to provide the first-order and second-order 
terms in the outer expansion. The non-uniformities in both these terms are 
studied. A two-term inner expansion is found and matched to the outer expan- 
sion. An additional non-uniformity appears in the neighbourhood of the vortical 
singularity. This is also rendered uniformly valid. The first-order results agree in 
form with Sapunkov’s non-uniformity in the normal velocity component, though 
they show that he made a computational error. Indeed, it would be impossible 
to construct a second-order expansion without a knowledge of this non-uni- 
formity. Results otherwise are in agreement with those of Cheng, Bulakh (1962 a ) ,  
and Woods. The second-order terms give additional information about the 
streamline shape, especially in the vicinity of the vortical singularity. Formulas 
are given that correct Kopal’s tabulated results to second order everywhere in the 
flow field. 

Holt (1954) made a local analysis of the flow near the vortical singularity. His 
results do not agree with either the present work or the results of Cheng, Bulakh, 
Sapunkov, or Woods. 

After the completion of this work the author learned that Mr R. I. Melnik of 
Grumman Aircraft Company had obtained a solution to this and the related 
problem of the flow over a cone of elliptic cross-section. The method used is 
almost identical to that used here, but differs greatly in detail. The results are in 
agreement. 

2. Formulation 
2.1. Co-ordinate system and dimensionless variables 

A spherical co-ordinate system is chosen as shown in figure 2. The angle between 
the axis and the position vector is 9, the distance from the origin is r,  and $ is 
the circumferential angle. The velocity at infinity, of magnitude u,, lies in the 
plane 4 = 0 and makes an angle a: with the axis of the cone. The velocity com- 
ponents u*, v*, and w* are in the directions of increasing r,  9, and $, respectively. 
The pressure and density are p* and p*. The cone half-angle is 7. Dimensionless 
variables are defined as 

u = u*/u,, v = v*/u,sinr, w = w*/umsina, p = p*/p,u2, sin2r, p E p*lpm; 
(2.1) 

8 E (sin9-sinr)lsinT. (2.2) 
It should be noted that 8 is measured from the surface of the cone. 

2.2. Diflerential equation and boundary conditions 
Substituting the dimensionless variables into the inviscid rotational equations 
for a perfect gas yields 

( 2 . 3 ~ )  

(2 .3b)  

40-2 
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( 2 . 3 ~ )  

(2 .3e )  

where 
In  addition, since the flow is isoenergetic, the Bernoulli equation may be used. 

g = sin a/sinr, J = cos 9 = (1 - sin27 (1 + f9)2)s. 

These equations are not all independent. Indeed, any one except (2.3d) can be 
eliminated. It is convenient, however, in the subsequent analysis, to consider 
all of them, and at certain points to particularize to a given set of five. 

FIGURE 2. The co-ordinate system. 

The boundary condition of tangent flow at the surface of the cone is 
v(O,+;CT) = 0. (2.4) 

At the bow shock wave the Rankine-Hugoniot relations must be satisfied. 
A solution to this problem would furnish a complete flow picture. There are two 

practical difficulties, however. The differential equations are non-linear and the 
position of the shock wave is unknown. Because of this latter difficulty, some of 
the boundary values must be imposed a t  an unknown surface. In  order to 
circumvent these difficulties, Stone perturbed the well-known basic solution for 
axisymmetric flow by expanding in powers of the angle of attack. 

3. Outer problem 
3.1. The outer solution, expansion in powers of i~ 

Stone (1948, 1952) assumed that the dependent variables could be expanded in 
ascending powers of the angle of attack, the coefficient of each term being itself 
a Fourier series in the azimuthal angle +. He found that homogeneity of the 
equations of motion and boundary conditions requires that all Fourier compo- 
nents vanish except those shown below. 

u(e, +; g) = u,(e) + cull(e) cos + + 4u2,(e)  + u2,(0) COB 24) + . . . , (3.1 a)  
qe, 4; IT) = V , p )  + gvll(e) cos 4 + gyvzo(e) + vz2(e) co8 2+) + . . ., (3.1 q 
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w(B,$;cr) = ~ ~ ~ ( ~ ) s i n g 5 + ~ ~ ~ ~ ( 8 ) s i n 2 g 5 +  ..., ( 3 . 1 ~ )  

P(o,$ ;g)  = P O ( ~ ) + Q P l l ( ~ )  ~ ~ ~ g 5 + ~ z ~ p , ( ~ ) + p , , ( e ) c o s 2 ~ ) +  .... (3 . le)  

Substituting (3.1) into (2.3) and equating coefficients of like powers of Q gives the 
following systems of ordinary differential equations : 

P(0,  4; @ = P o ( 4  + CPll(@ cos g5 + C2(P20(4 +P22(4 COB 2g5) + * * - 9  (3.1 4 

for the basic axisymmetric flow 
u; = vo sin2 r/  J ,  

PdPO + vov; + "o"o/J = 0,  
w; + vo{pJpo + I/(  1 + e)} + 2u0/J = 0, 

po/p; = const.; 

v0uil = vo sin2 r vll /J,  

for the linear effects of incidence, 

V o ~ ; l + ~ 1 1 ( ~ 0 ~ 1 1 / J + ~ ; )  +~1l~o/J+P; l /Po-Pl lP; /P ,2  = 0, 

wozL';1+ W l , ~ V O / ( ~  + 8)  + UOfJ) --P,,m + 4 Po J = 0, 

gull w11 + v o ( E ) '  = 0, 
' 1  &+-- +-+- 

" ' l f v n  ( po 1 +O) J J ( l  +f?) 

Pll/PO - Y(P 1llPO) = 4 
uoull+vovllsin2r+- Po - Y Pll --- PI1 sin2r = 0;  

PoY- 1 [ P o  P o l  
and for the quadratic effects of incidence, 

u;lm-sin2rv2,/J = {( - l)*m/2Jvo)wll(ull+wllsin2r), 

pzm ) + Wi1( &.I, + 5 po vo + - U2m + - - u11+ ~ u g  
lPl1 ) ;( 2 p 0  Po 

1 P11 

( 3 . 2 ~ ~ )  

(3.2 b)  

( 3 . 2 ~ )  

(3.2d) 

(3.3a) 

(3.3 b)  

(3.3c) 

( 3 . 3 4  

(3.3e) 

(3.3f 1 

( 3 . 4 ~ )  

(3.4b) 

(3.4c) 

( 3 . 4 4  

(3.4e) 

with m = 0,  2 in each case. 
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3.2. Boundary conditions 
Stone (1948,1952) obtainedboundary conditions at the shock wave by expanding 
its position in ascending powers of Q about the position for Q = 0, and transferring 
the expanded flow variables by Taylor series from the actual shock position to 
the position for (r = 0. The present results W e r  slightly from those given by Stone 
because he used wind rather than body axes. 

The outer expansion will later be seen not to be uniformly valid near the sur- 
face, because of the vortical layer. It is therefore not correct to satisfy the 
boundary condition at the body surface by substituting (3.1 b) into (2.4). Since, 
however, no layer exists at zero angle of attack, we can conclude that 

w0(O) = 0. (3.5a) 
Woods pointed out that if wind axes are used one encounters difficulty in 
formulating the surface boundary condition because of the non-uniformity in the 
expansion for the normal velocity component. This is avoided here by the use 
of body axes. 

It will be shown later that the correct boundary conditions for the higher-order 

(3.56) perturbations are 
%(O) = 0, 

V,,(O) = 0, m = 0,2. (3.54 
These conditions would be obtained if one substituted (3.1 6 )  into (2.4). 

3.3. Behawiour of the outer expansion near the surface 
The non-linear equations (3.2) governing the basic axisymmetric flow were 
solved numerically by Taylor & Maccoll(l933) and Kopal(l947 a). The equations 
governing the linear (3.3) and second-order (3.4) effects have been solved 
numerically by Kopal (19473, 1949). Roberts & Riley (1954) have given 
formulas that can be used to transform the numerical results of Kopal to the 
present co-ordinate system. Thus solutions to the systems (3.2), (3.3) and (3.4) 
are available in the literature. 

We will now examine these systems of equations and ascertain the behaviour 
of the solutions near the surface. From (3.5a) and (3 .2~)  it follows that for small 
0, wo+ 0 while w; is finite. Therefore near the surface we have 

v; = ev;(o)+ .... (3.6) 
From (3.6) both the first- and second-order equations possess coefficients that 
vanish near the surface. The possibility therefore arises that some of the first- 
or second-order quantities are singular near the surface. Since both of these 
systems are linear and the individual equations are first order, they may be 
integrated formally and the resultant integrals examined near the surface. 
Stone (1948) has shown that the first-order quantities are regular at the surface. 
Clearly, from (3.4e) and (3.6) the second-order correction to either the pressure 
or density or both is singular a t  the surface. Indeed, for small 0 we have 

s f f l - r k  = ( -  1)hm 12: ---cie+terms finite at surface. (3.7) Po Po 
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It can be shown that pZm and uZm are the only second-order quantities that are 
singular at the surface (dv,,/dQ is singular, however). So we have 

wll(o) log 0 + terms finite at surface, (3.8 a) 
( -  1)am2yJ(0) vi(0) 

Pam = - 
Po 

Some useful relations between the zero-incidence, first-order, and second-order 
quantities at the surface are 

V; = - 2 ~ o / J ,  (3.9) 

UOW11 = PlIlPO, ( 3 . 1 0 ~ )  

( 3.1 0 b)  = - 2u11/J - wll/ J ,  

P11 Pll Ull = --- P O U O  Y-1 ~ _ _  
posin2T y Po Po’ 

( 3 . 1 0 ~ )  

where J(0)  = COST. Stone (1952) and later Cheng (1962) noted this singular 
behaviour of the second-order quantities but Kopal (1949) ignored it when he 
obtained numerical solutions to the system. This behaviour is an indication that 
some of the quantities are not given correctly at the surface to second order by 
the outer expansion. From the following expression for entropy it will be seen 
that even the first-order variables are not given correctly there. If we define As 
to be the difference between the value of entropy at incidence and the value at 
zero incidence, then 

fls = log [i ( $ ) y ] .  
cv 

(3.12) 

Substituting from (3.1) gives 

As 
cv 

+ [” Po - y h  Po - $ e) + e)2] cos 2(i5] + . . . . (3.13) 

It can be concluded directly that (3.13) predicts an entropy variation on the body 
surface to first order, whereas we know the entropy should be constant. From 
(3.3e), the coefficient of c~cos(i5 in (3.13) does not vary with 8 and hence can be 
computed from the shock-wave relations. From these relations it follows that 
only for shock waves of zero strength is this coefficient zero. The second-order 
correction to the entropy is of course infinite at the surface. 
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3.4. Region of non-uniformity 

The form of the singularity, i.e. the fact that pzm w log 8, suggests that near the 
surface the first-order density perturbation is proportional to 8". This in turn 
suggests that the behaviour of the solution near the body can be described 
better in terms of 8" than in terms of 8 itself. 

This same conclusion can be arrived at by other considerations. In-reducing 
(2 .3e )  to (3 .3e )  it is necessary to drop 

while retaining 

As long as 8 does not approach zero the former is smaller than the latter, but near 
the surface the situation may be reversed since by (3 .6 )  vo is proportional to 8 
for small 8. We must therefore consider a small region in which 8 (a/#) = O(g) .  
If we define 0 = 8", we magnify the region such that o(a/a@) = O(1). 

4. Inner problem 
4.1. Inner variables and dijj'erential equations in inner variables 

New independent variables that are of order unity in the vortical layer are 
defined according to o = eg, (4.1 a)  

CD = $. ( 4 . l b )  
To exhibit the zero in the velocity we define 

v = vie. ( 4 . 2 ~ )  

This makes V of O( 1 )  in the region of interest. The other dependent variables are 
defined according to u = u, (4 .2b)  

w = w, ( 4 . 2 ~ )  
p = p ,  (4 .2d )  
R = p .  (4 .2e)  

We substitute the above into (2 .3)  and obtain 

( 4 . 3 ~ )  

2 ( 1 + 0 1 ~ u ) R U + J ( l + O ~ ~ " )  VR+JgOa[(l+@l/")  V R ] / ~ @ + V ~ ( R W ) / ~ @  = 0, 
(4 .3d )  

(4.3e) 
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4.2. Inner expansions 

We expand the inner variables in ascending powers of a according to 
m 

W ( 0 ,  CD; a) = z an-'W,(@, CD), 

U ( 0 ,  @;r)  = CI CmUn(O, CD), 

V ( 0 ,  CD; a) = x @Vn(@, CD), 

P(0,  CD; a) = z @Pn(@, CD), 
R(@, @;a) = CI a"Rn(@, CD). 

n= 1 
m 

n=O 
m 

n=O 
m 

n = O  

m 

n=O 

(4 .4a)  

(4 .4b)  

( 4 . 4 4  

(4.4d)  

(4.4e) 

We substitute these expressions into equations (4 .3 )  and equate coefficients 
of like powers of c. The zero-incidence equations simply express the fact that these 
quantities are not functions of 0, i.e. they do not change across the layer. This is 
the result we expect intuitively. We find the following systems of equations for 
the linear effects of incidence 

[Jv,o(a/a@) + W,(a/aCD)] U, = W; sin27, (4 .5a)  

aPl/ao = 0, (4 .5b)  

(4.5c) 

2U1+JV,+(aw,/aCD) = 0, (4 .5d)  

R, vow, = - aP,/a@, 

u u +-- Y Po [---I el Rl ~ n 2 7 =  0;  
O ' r - l R o  Po Ro 

(4 .5e)  

( 4 5 f  1 

and for the quadratic effects of incidence 
[Jv,o(a/ao) + w,(a/aCD)] %+ [Jv,o(a/ao)+ W2(a/a@.)1 U, = 2sin27K%, ( 4 . 6 ~ )  

aP2/ao = 0,  (4.6b) 

( 4 . 6 ~ )  

(4 .6d)  

(4.6e) 

Note that the terms of O(@l/u) do not contribute to the inner solution. This is 
consistent with neglecting exponential terms in classical boundary-layer theory. 
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4.3. Boundary and matching condition 
The boundary condition at the surface is obtained by requiring that (2.4) be 
satisfied. This is shown in detail in $5.3. 

The inner expansion is valid only in a thin layer near the body and cannot be 
expected to satisfy the shock conditions. Therefore the boundary conditions are 
obtained by matching with the outer expansion. We apply the following 
matching principle: 

m-term inner expansion of (p-term outer expansion) 
=p-term outer expansion of (m-term inner expansion). (4.7) 

As an example of the application of the matching principle consider the three- 
term outer and inner expansions for the pressure. 

%term inner expansion of [po(0) + gpl1(O) COB q5 + a2(p2, +pZ2 cos 2@)] 
= 3-term outer expansion of [Po(@, @) + QP,(@, @) + cr2P2(0, @)I. (4.8) 

We construct the outer expansion of the first bracket by rewriting the terms 
therein in the variables 0 and @ (e.g.pl,(O1/") cos @) and expanding in powers of Q. 

Therefore we obtain 

POW + QPll(0) COB @ + f l2 {P2o(O)  +P22(0) cos 2@,> 
= 3-term outer expansion of [Po(@, @) + gPl(O, @) + aaP2(0, @)I. (4.9) 

Similarly, we take the outer expansion of the expression in brackets in (4.9) by 
writing the functions in inner variables and expanding in powers of fl. See $5.3 
for examples of this. 

5. Uniformly valid solutions 
5.1. General procedure 

I n  what follows we will solve the system of equations governing the first-order 
perturbations, apply the matching and boundary conditions and immediately 
modify each inner expansion so that the result is uniformly valid throughout the 
flow field. We will solve the second-order problem in the same fashion. Before we 
do this, however, we will first obtain a solution for the pressure. 

5.2. Pressure 
Pressure is in a class by itself and can be disposed of fist .  The equations for the 
first- and second-order pressure perturbations state that these quantities are 
independent of 0. From this fact and (4.9) we obtain 

Po = PO(O), ( 5 . 1 ~ )  
4. = p,,,(O) cos @, (5.1 b) 

pz = P20(0) + P 2 2 ( O )  cog 2@* (5.1~) 

Then the outer expansion (3.1 d) is uniformly valid to second order everywhere. 
This result is not restricted to second order. From (4.3b) it follows that 

8PJ80 = 0 for all n. (5.2) 
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Therefore the outer expansion for pressure is uniformly valid to any order. This 
is in contrast to viscous boundary-layer theory where the second-order correction 
to the pressure varies across the layer (Van Dyke 1962). 

5.3. First-order solution 
We shall now solve (4.5) for the first-order perturbations. Since P is known from 
( 5 . l b ) ,  equations (4.5a), (4.5c), (4.5d) and (4.5f) are sufficient to determine the 
unknowns. First, we evaluate the basic axisymmetric flow quantities. Because 
these quantities do not change across the layer the outer expansions are valid at 
the surface. Therefore we can write 

v, = U,(O), ( 5 . 3 ~ )  
Ro = PO(O), (5 .3b)  

We have from ( 4 . 5 ~ )  Wl = pll(0) sin @/p,(O) uo(0), ( 5 . 4 ~ )  
and from ( 3 . 1 0 ~ )  Wl = wll(0) sin @. (5.4b) 

Since the coefficients of ( 4 . 5 ~ )  are now known we can integrate this equation, 
using the theory of characteristics for linear partial differential equations of 
first order. The result is 

u1 = f ( Q )  - wll sin2 T cos @, ( 5 . 5 ~ )  

where f is an arbitrary function and 

v, = wA(0). ( 5 . 3 4  

Q 2 - - @wll(o)seo 7 / w o  [( 1 + cos @)I( 1 - COB @)I* (5 .5b )  

We must evaluate f from the matching condition (4.7). This condition requires 
that 

( 5 4  

We now consider the function (1 - {;)I( 1 + 6:). We write this function in terms of 
8 and 4, expand in ascending powers of cr, and retain the first term. We obtain 

1-term outer expansion of [(l - 6?)/( 1 + {?)I = - cos @. 

Therefore to satisfy (5 .6)  we must choose f as 

uO(o) + au,,(~) cos @ = 2-term outer expansion of (u, + crq). 

f(6J = -(ull(0)+wll(O)sin2T)(1-64)/(l +C?h  (5.7) 
From (4.5f) (and substituting from (3 .10))  we find thatf 

v, = C2/J(O)l [ U l A O )  + Wll(0) sin271 (1 - Y?)/(1+ 64) 
+[wl,(0)/J(O)]cos@(2sin2~- 1). (5.9) 

It follows, from a comparison of (5.9), (3.10b) and the definition of F' ( 4 . 2 ~ ) ,  that 
V, matches the first perturbation term in the outer expansion. It also follows, 
from the fact that ull and wll are well behaved at the surface, that the normal 
component of the velocity, SV,, vanishes at the surface. Thus the surface-boundary 
condition is satisfied. 

(3.9), (3.10) and (3.11). 
t Many alternative forms of this and the following equations can be obtained using 
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Uniformly valid expansions for the density and radial velocity are given by 
u = uo - g{[ull(0) + wll(0)sin27] [(l 6;)/(1 +[;)I + wll(B) cos @sin%) + . .., (5.10) 

(5.11) 

To construct a uniformly valid expansion for the normal velocity we use the 
following rule for each term 

uniformly valid expansion = inner expansion + outer expansion 
-inner expansion of (outer expansion). Therefore we obtain 

v = vo(B)+~8{2[ull(0)+wll(0)sin2~]sec~(1 --[;)/(l+<;) 
(5.12) 

To first order in cr the outer expansions (3.1 c) and (3.1 d )  for w andp are uniformly 
valid. The uniformly valid first-order expansion for the entropy can be found by 
substituting (5.11) and the first two terms of (3.1") into equation (3.12). The 
result is As/c~  = -ad(l-5;)/(1+5,2)+.. . .  (5.13) 

Equation (5.13) agrees with (3.13) in the region where the latter is valid and 
predicts a constant value of entropy on the body surface. First-order streamlines 
are lines of constant cl (see figure 1). 

+ wl1(0) cos @ (2sin27- 1) sec7-vB;1(0) cos @ + (I/@ vll(B) cos @}+ .... 

5.4. Xecond-order solution 
The system (4.6) excepting (4 .6e)  is solved in the same manner as was (4.5). That 
is, W2 is evaluated from ( 4 . 6 ~ )  and ( 5 . 1 ~ ) .  Equation ( 4 . 6 ~ )  is then integrated and 
the matching condition (4.7) applied. The resulting second-order expansion is 

[u,,(~) + wl1(8) sin271 1-621, wl1(6) cos sin27 1+5; 
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V, and R, can now be evaluated from (4.6d) and (4.6f). Before this is done it is 
desirable to examine (5.14). It can be seen that uZ2 and u20 always occur in 
combination with terms proportional to log 8. These terms arise as a result of the 
application of the matching principle. Equation (3 .8b)  shows that ug2 and uzo 
are themselves proportional to log0 near the surface and a comparison of this 
equation with (5.14) shows that the terms in question are well behaved near the 
surface. All other functions in (5.14) are well behaved near the eurface except 
the terms proportional to log sin @ and log 0. Because of the functions of cl that 
multiply these two logarithmic terms, they can be singular only at 8 = 0, q5 = 0;  
that is, near the leeward ray. Thus we have reduced the region of non-uniformity 
from the entire cone surface to the neighbourhood of the top ray. 

This additional non-uniformity can be treated by observing that, as a result of 
the expansion procedure, a term of the form 0" would appear as 

1 + clog 0 + . .. . 
First, we notice the following: 

log sin2 @ = -log CZ, + log 02w11*ec7/2)6 + log (1 + cos @)2, (5.15 a)  
1 - {( 1 + cos @)/( 1 - cos @)} @fi(@+"fa(e) 1 - ((1 + cos @)/( 1 - cos @)} @fi(B) - 
1 + {( 1 + cos @)I( 1 - cos @)} @fl(@+"ffa(@ - 1 + {( 1 + cos @)I( 1 - cos @)} @fl(@ 

1 - @"f3(@ = - gf3(8) log 0 + .... (5.15 c)  

Equation (5.14) can now be rewritten, using the above relations, in the form 

u = uo(e) - cr([ul1(8) + wl1(8) sin271 5 + wll(e) sin27 cos CD 
1+c; 

(5.16a) 
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The equation above is uniformly valid even in the neighbourhood of the vortical 
singularity. Elsewhere it agrees with (5.14) to second order in a. 

The previously determined uniformly valid second-order expansion for the 
circumferential velocity is 

The expansions for the density and normal velocity are 
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+ (1/8) ( V z 0 ( 8 )  + v22(8) cos 2 0 )  + . . . . (5 .16e)  

The previous expansion for the pressure, equation (3 . ld) ,  is uniformly valid to 
second order in (T. The uniformly valid expansion for the entropy can be found by 
substituting (5.16d) and (3 . ld)  into equation (3.12). The result is 

I 
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5.5. Discussion 
To obtain a picture of the flow it is sufficient to examine the first- and second- 
order expansions for the entropy, since lines of constant entropy are projections 
of the streamlines onto any surface r = const. 

From (5.13) it can be seen that in the outer region As is constant on lines of 
constant q5 as in figure 1. Near the surface, streamlines bend around the body 
toward the top ray. Q varies from zero to infinity, the cone surface and the 
streamline in the plane of symmetry on the windward side of the cone corre- 
sponding to & = 0. From this fact it is clear that the body is wetted by the 
streamline carrying the maximum entropy. The streamline in the leeward plane 
of symmetry carries the minimum entropy and is described by = co. These 
two streamlines meet-as do all other streamlines-at 0 = 0, q5 = 0 (see figure 3). 

0 I 
FIGURE 3. Projection of streamlines in the neighbourhood of the vortical singularity on 
r = const. surface (schematic). - , First-order streamlines; - - -, second-order stream- 
lines. 

Thus it is clear that the first-order solution represents Ferri’s vortical layer 
together with the vortical singularity a t  0 = 0, q5 = 0. The analytical results of 
Cheng, Bulakh, Woods, Sapunkov and Melnik are in agreement with these 
results. 

The second-order perturbation is a correction to the vortical layer solution. The 
surface streamline and the streamlines in the windward and leeward planes of 
symmetry are unaltered. As shown in figure 1, the other streamlines depart 
slightly from lines of constant c2. Near the vortical singularity, however, As/cv 
is a function only of t. Thus, in this neighbourhood we can approximate the 

,3di(O)+~~tdO)/q52 = const. (5.17) 
streamlines by 

The functions fl amdf, are those in the exponent of 0 in (5.16b). Clearly, the 
second-order correction to the streamline shape in the neighbourhood of the 
vortical singularity-i.e. cr”f,( 0)-alters the streamline shape slightly but does 
not change the analytic nature of the curves (see figure 3). 
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The second-order perturbations agree in form with those of Sapunkov every- 
where except in the neighbourhood of the vortical singularity. In  that region 
Sapunkov’s result for the streamline shape is 

P/qP = const., where B = gg, + ( r2g2(B~g1/q52)  (5.18) 

and g, is a constant. It is clear this does not agree with (5.17) since O/@ takes on 
all values from zero to infinity near the vortical singularity. To compare these 
two results, we consider generalizing them to nth order. We would obtain for the 
function in (5.17) an nth-order polynomial in CT in the exponent of 8, whereas 
for the function in (5.18) we would obtain a very complicated expression with an 
escalating exponent. If we substitute this latter function into the equations of 
motion we arrive at a result that is not consistent with any sensible local expan- 
sion. It is on this basis that we prefer (5.17). 

Ferri (1 950) has conjectured that at high angles of attack thevortical singularity 
leaves the surface of the cone. Although our result is valid only for small angle of 
attack we may reasonably ask if it supports Ferri’s conjecture. We might sus- 
pect that the additional non-uniformity that appears in (5.14) is connected with 
this phenomenon. If we assume that this is true, it  follows that the vortical 
singularity will be located at 

CD = 0, O = k g ,  

1 - (0 - kg-)f1+vfft (1 + cos @)I( 1 - cos @) 
1 + (0 - kC)fl+Uffe (1 + cos a)/( 1 - cos @) * 

where k is a constant. Then the first-order terms will be of the form: 

We now expand this expression for small CT and try to identify the result with 
terms in (5.14). The result of the expansion is 

1 -@fl(l +cos @)/(l - cos Q) - ~ C T  @fl( 1 + cos @)/( 1 - cos CD) 
(1 + @fl(li- cos @)/(I - cos@,z 1 + @ f I ( l  +cos @)/(l -cos @) 

x (f2 log 0 -ti k0-1) + . . . . 
Since no term proportional to 0-1 appears in (5.14), we must conclude that to 
second order in angle of attack the singularity remains on the surface. The 
appearance of such a term in higher-order perturbations would be an indication 
that the singularity leaves the surface. 

Numerical values for the first-order outer quantities can be obtained by 
applying the transformations of Roberts & Riley (1954) to the results of Kopal 
(1 947 b) .  Since Kopal (1949) ignored the logarithmic singularities in the compu- 
tation of the second-order quantities, the results of Roberts & Riley probably 
approximate closely the correct second-order quantities with the singularities 
removed. For example, the second-order density perturbations one would 
obtain from applying Roberts & Riley’s formulas to Kopal’s result probably 
closely approximate 

Pzm f ( - 1 P  (%d/2yJv;) log 0. 

The same is true for the radial velocity perturbation. 
41 Fluid Mech. 20 
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Our solution displays the basic features of Ferri's vortical layer, the only dis- 
agreement being with Ferri's estimate of the thickness of the layer. The present 
result and also the results of Cheng, Bulakh, Woods, and Melnik indicate that 
the layer is thinner than any power of u. The solution carried out here to second 
order in u could be extended to any order, though a certain amount of ingenuity 
would be required to treat the vortical singularity itself to higher order. 

Theresultsof Bulakh (1962a)are in basic agreement with the present first-order 
solution. His result for the radial velocity is identical with (5.10) if one changes 
ur to ul(0) in his equation (5.4). The present results correct the non-uniformity in 
normal velocity gradient that he overlooked. The solution of Woods (1962) 
contains some of the features of the present first-order solution, but no explicit 
results for the flow variables throughout the flow field are given. 

The present first-order solution can be compared directly with the results of 
Cheng and Sapunkov (1963a, b )  by taking the Newtonian limit of the zero- 
incidence and first-order quantities. This is done by writing uo, wo/e, po,  and epo 
as functions of 9 and Ole, and expanding them in ascending powers of 

8 = (?--1)/(Y + 1). 

The process has been carried far enough to check first-order results, i.e. coeffi- 
cients of u and c. The results obtained agree with Cheng's corrected results in the 
outer region and with those of Sapunkov. The Newtonian limit of the inner 
expansion is obtained in the same way, except that the independent variables are 
(O/s)"" and 9. With the exception of the normal component of velocity, these 
results agree with those of Cheng. The present results confirm the presence of the 
non-uniformity in normal velocity that was discovered by Sapunkov (1963b), 
but show that he made an algebraic error in removing that non-uniformity. One 
may obtain the correct result by replacing the coefficient of O{ in the first of his 
equations (7.2) by - 2 sin2 7 sin wlcos 7.  

The second-order terms are corrections to the basic vortical layer solution. The 
streamline shapes are altered in the entire flow field. In  particular, in the neigh- 
bourhood of the vortical singularity they are given by (5.17). The unpublished 
results of Melnik are in agreement with (5.17). Kopal's tabulated results can be 
corrected to second order everywhere by using equations (5.16). 

This work was partially supported by the Air Force Office of Scientific Research 
under Contract no. AFOSR 96-63. 
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